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NETWORK OPTIMIZATION

o Modes represented by circles, present junction
points connecting arcs.

o Arcs represented by /ines, connect nodes and
present flowfrom one point to another.

o A decision needs to be made about the best
way to flow or send something through a
network.

®
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COMPONENTS OF TYPICAL NETWORKS

Intersection Roads Vehicles
Airports Air lanes Aircraft
Switching points Wires, channel Messages
Pumping station Pipes Fluids
Work centers Material-handling routes Jobs

The road system for Seervada Park
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NETWORK OPTIMIZATION (4)

o Terminology of Networks (cont.)

FIGURE 9.2
The distribution network for m

Distribution Unlimited Co., N
first shown in Fig. 3.13,
illustrates a directed network.

(
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« Directed Path from A to E:

A->B->C->E

o Undirected Path fromAtoE:B>C>A>D—>E
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A DIRECT NETWORK
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AN EXAMPLE OF DIRECT NETWORK FROM CHAPTER 3
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EXAMPLE OF NETWORK AND TREE
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THE NODE WITHOUT ARCS
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A TREE WITH THREE ARCS
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A TREE WITH TWO ARCS

A SPANNING TREE
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(1) SHORTEST PATH PROBLEM

o Shortest-Path Problem:

« Finding the shortest route from the starting node to each of
the other nodes in the network.

» “The shortest-path algorithm”

FIGURE 2.1

The road system for Seervada
Park.
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SHORTEST PATH PROBLEM

The road system for Seervada Park ‘ °
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NETWORK OPTIMIZATION (10)

TABLE 9.2 Applying the shortest-path algorithm to the Seervada Park problem

Solved Nodes Closest Total nth
Directly Connected Connected Dist. MNearest | Mini Last
n | tol Ived Nodes Ived Node Ived Node | Distance | Connection
1 A 2 A 2 04
33 a C 4 C 4 oc
‘ A B 242= 4 ] 4 AB
A D 247=29
4 B E 4+ 3= 7 E 7 BE
c I3 4+4=18
A D 2+7=9
5 B D 44+44=18 D 8 BD
E D 7+1=28 D & ED
6 D T 8+5=13 T 13 oT
3 T 747=14
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SHORTEST PATH PROBLEM BY EXCEL (11)

) c o | E Fl & | w ToT J
1_|Seervada Park Shortest-Path Problem
2
El | From | To | On Route Distance | Nodes | Net Flow |Supply/Demand|
4 o A 1 2 o | = 1
3 o] B [ 5 A = 0
5 [+] [+ 0 4 8 0 = 0
7 A B 1 2 c 0 = 0
A D 0 T D 0 = 0
) B 7 [ 1 E 0 = 0
10 B 8] o 4 T 1 |= B
1 B E 1 3
12 [+ B (] 1
13 [ E [3 4
4 D E [ 1
T5 [5} T 1 5
i E ] 1 1
7 | E | T 0 - | 1
i
€ 5] | Total Distance @] 1 I 1 o
5
3 Net Flow
cek: ctabistan ] (=
I i 4 |=SUMIF(From,G4,Orioue)-SUMIF(T0,64,Orfiouie]
EqualTo:  Cpax Gmg © SUMIF (From, G5, OnRoue)-SUMIF(T0,G5,Onfloute)
{2y Changing Cells: SUMIF (From, G68,OnR cute |- SUMIF{T0,G6, OnRoute)
e SUMIF(From,G7 Onfiouie)-SUMIF({To,G7 Onfouts)
B _|=SUMIF(From.G8,OnRoute)-SUMIF{To,G8 OnRouts)
Subject to the Constrants: 8 _|=SUMIF(From,G9,Onfcute)-SUMIF{T0,G9,Onfiouts)
e 70_|=SUMIF(From,G10.OnRouts)-SUMIF(To.G10,0nRouie)
¥ Assume Linear Model
¥ Assume Nor-Negstive
[3 o To cac17
19 | Total Distance =SUMPRODUCT(D4D17.E4E17) | TotalDistance D19
=
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SHORTEST PATH PROBLEM (EXERCISE 1)

Operation Research (IE 255320)

©Copyright
Original work by K.Y.Tippayawong, August, 2010




SHORTEST PATH PROBLEM (APPLICATION: EX 2)

n1snaunuiesavfia (Equipment Replacement)

viEn lavinnsununsmaunuasatiiadmsu 5 Udald Tnaussn
dunsamaaziualddralunisdainiaiia AUl i LLazazmqﬁ(ﬁuﬂ

] leTasAmuailu C; asvuluunandingalunismaunuiaiasing
C,, = 700 Cys = 1400 Cqs = 1700

C,s = 900 C, =1300  Cy = 1700
Cy =1000  Cus=1200  Cgq = 2000
C.s = 800 Cu =1200  Cgq =700
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(2) THE MINIMUM SPANNING TREE PROBLEM

Some Applications

1. Design of telecommunication network

2. Design of a lightly used transportation network to
minimize the total cost of providing links (rail, road)

3. Design of a network of high voltage electrical power

1. Design of a network of wiring on electrical equipment

(digital computer)

of locations
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5. Design of a network of pipelines to connect a number
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(2) THE MINIMUM SPANNING TREE PROBLEM

o Minimum Spanning Tree Problem

« Once the arcs have been selected, they can provide a plan
for setting up a system in which every node can
communicate with every other nodes along some path
connecting them.

» This problem is to find the network with n node that requires

only (n-7) links to provide a path between each pair of
nodes with no undirected cycle.
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THE MINIMUM SPANNING TREE PROBLEM

@e

(a)

Not a Spanning Tree
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Spanning Tree
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THE MINIMUM SPANNING TREE PROBLEM
THE MINIMUM SPANNING TREE PROBLEM ‘ Example: Install the phone line in Seervada Park ‘
‘ The road system for Seervada Park ‘ Start
Step-1
The network with n node require only (n-1) links to provide
a path between each pair of nodes. Q @
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THE MINIMUM SPANNING TREE PROBLEM THE MINIMUM SPANNING TREE PROBLEM
‘ Example: Install the phone line in Seervada Park ‘ ‘ Example: Install the phone line in Seervada Park ‘
Step-2 Step-4
Step-3 Step-5
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THE MINIMUM SPANNING TREE PROBLEM

‘ Example: Install the phone line in Seervada Park ‘

Step-6

Total length of the link is 14 miles = 2+2+1+3+1+5
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THE MINIMUM SPANNING TREE (EXERCISE 3)

Destination
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THE MINIMUM SPANNING TREE (EXERCISE 4)

Origin
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NETWORK OPTIMIZATION (18)

o Example: Solve this problem as Minimal Spanning Tree
Problem
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(3) THE MAXIMUM FLOW PROBLEM

LﬂuﬂmmLﬂmnumwumaﬁum 9178157048 UFANTWLING
1o 9 A TunBNF (Source Node) ”L]Jm’luﬂﬂmavm (Sink
Node) TnafiTunsznitvnaraiiuluafiaudradudn

Applications:

Maximize flow through a company distribution network
Maximize flow through a company supply network
Maximize flow of the oil through a system of pipelines
Maximize flow of water through a system of aqueducts

Maximize the flow of vehicles through a transportation
network

abrwN =
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THE MAXIMUM FLOW PROBLEM

Example: Maximize tram trip from park entrance (Station 0)
to the scenic wonder land (Station T)

Source

o—0

WAALEUMISHIND node V=HMSATHUAYIUOUSOUAIAATIV=ANNSADIDONIN
park entrance lffodu MAd@UNinMUA

©Copyright
Operation Research (IE 255320) Original work by K.Y.Tippayawong, August, 2010

THE MAXIMUM FLOW PROBLEM (26)

Example: Maximize tram trip from park entrance (Station 0)
to the scenic wonder land (Station T)
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THE MAXIMUM FLOW PROBLEM (27)

()2

Iteration O:

Iteration 1: Pick O-B-E-T
Max Flow = Min (7, 5, 6) =

f"‘n

\‘v

\\\\/ﬂ/ \ 5 /!
o (")4 £
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THE MAXIMUM FLOW PROBLEM (28)

o lteration 1:

o lteration 2: Pick O-A-D-T
e Max Flow = Min (5, 3,9) =3
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THE MAXIMUM FLOW PROBLEM (29)

o lteration 2:

o lteration 3+4: Pick O-A-B-D-T (Max Flow = 1)

and O-B-D-T
(Max Flow = 2)
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THE MAXIMUM FLOW PROBLEM (30)

o lteration 3+4:

o lteration 5+6: Pick O-C-E-D-T (Max Flow = 1)

and O-C-E-T
(Max Flow = 1)
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THE MAXIMUM

FLOW PROBLEM

o lteration 5+6:
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o Optimal Solution:

THE MAXIMUM FLOW PROBLEM

14

Maximum Flow =
14
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THE MAXIMUM FLOW PROBLEM

Example: Maximize tram trip from park entrance (Station 0)
to the scenic wonder land (Station T)

OPTIMAL SOLUTION

14
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THE MAXIMUM FLOW PROBLEM (EXERCISE 5)
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THE MAXIMUM FLOW PROBLEM (EXERCISE 6)
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